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In this paper we studied the transport properties of a finite homogeneous fragments of
DNA composed by N base pairs of Guanine (poly (G)) and Cytosine (poly (C)) connected
to two semi-infinite leads. We study these molecules adopting different models within a
nearest neighbour tight-binding approach. We proposed a semi-analytic method for the
calculation of the transport properties of DNA molecules by using Green’s function tech-
niques within a real-space renormalization scheme. We studied the transmission probabil-
ity, the I–V characteristics and the Noise power of current fluctuations as a function of
intrasite and DNA-leads coupling parameters. Our results show different transport regimes
for these molecular systems as a function of the coupling intensities, exhibiting metal–
semiconductor transitions.

� 2012 Elsevier B.V. All rights reserved.
1. Introduction

In the last decades, there has been an increasing interest
in the study of molecular electronic devices. In the litera-
ture, it is possible to find several proposed systems such
as carbon nanotubes [1], organic molecules [2] and DNA
molecules attached to metallic contacts [3–17]. All these
systems exhibit interesting electronic behaviours useful
for the development of new technological applications.

In particular, the transport properties of DNA molecules
is still an interesting and controversial issue, due to the
diversity of electronic behaviours reported by a variety of
experimental studies. Those reports show that depending
on the type and composition of the considered systems,
the DNA molecules behave as superconducting [3], metal
[4–8], semiconductor [9–15] or insulator [16,17].

Electronic transport in DNA molecules can be consid-
ered as discrete jumps between pairs of nucleotide bases.
The two strands representing the double helix structure
of DNA form two channels of propagation of the electrons
[18], which can be controlled by applying gate voltages
. All rights reserved.
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over the molecules. The current passing through these
molecular systems is, in general, a non-linear function of
the applied voltages. Due to this non-linear behaviour, it
is possible to observe quantum fluctuations in the trans-
port properties of DNA systems. In the absence of scatter-
ing processes, these fluctuations are known as the noise
power spectrum which, in a steady state, is described by
the Shot noise. The noise power provides an important
information about the electronic correlation by means of
the Fano factor (F), which indicates whether the magnitude
of the noise reaches a Poisson (F ¼ 1) or sub-poisson
(F < 1) limits [19].

In this work we propose a semi-analytic method for the
calculation of the transport properties of DNA molecules.
By using a nearest neighbour tight binding Hamiltonian
and based on the Green’s function formalisms, we calcu-
lated the transmission probability, the I–V characteristics,
the Shot noise and the Fano factor of molecules composed
by homogeneous segments of pairs of basis poly (G) and
poly (C), connected to two semi-infinities metallic con-
tacts, as it is shown in Fig. 1.

To describe these molecules we have adopted the
Fishbone (Fig. 1b) and the Ladder model (Fig. 1c). Both
representations consider the DNA molecules as a planar
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Fig. 1. (a) Flat segment of DNA molecule, (b) Fishbone model and (c)
Ladder model.
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structures composed by N unit cells coupling to the leads.
By applying real-space renormalization techniques, we ob-
tain one-dimensional effective models for which we analyt-
ically determined the transmission coefficients [20]. With
this expression, we numerically calculate the I–V character-
istics, the Shot noise and the Fano factor, reducing effi-
ciently the computational time of calculus. We have
focused our analysis in the modulations of the transport
properties as a function of the intrasite and the DNA-leads
coupling potentials. Our results show different electronic
behaviours as a function of the coupling intensities,
exhibiting transitions between metal and semiconductor
regimes.
2. Formalism

We have studied the transport properties of DNA mole-
cules by using the Landauer–Büttiker [19,21] formalism
based on Green’s function techniques within a real-space
renormalization approach (decimation procedure)
[22,23]. In this scheme, the Fishbone and Ladder DNA rep-
resentations are transformed into an effective linear mono-
atomic chain, as it is shown in Fig. 2.
Fig. 2. Effective one-dimensional model: linear monoatomic chain of N
sites connected to two metallic leads.
The Green’s function of the DNA molecules coupled to
the leads are calculated by using the Dyson equation
G ¼ G0 þ G0 RL þ RRð ÞG, where G0 is the bare Green’s func-
tion of the isolated DNA molecule and RL and RR are the
self-energies of the left and right lead, respectively.

In a general approach, the transmission probability can
be obtained by using the Fischer–Lee [21] relationship,
which is given by:

TðEÞ ¼ Tr CLGrCRGa
h i

: ð1Þ

where CLðRÞ ¼ i RLðRÞ � RLðRÞy
� �

is the spectral matrix density
of the left (right) lead, which has non-null elements only
for CL

11 and CR
NN , respectively.

Due to the systems can be renormalized into an effec-
tive linear chain, the transmission probability can be writ-
ten as:

TðEÞ ¼ CL
11C

R
NNjG

r
1Nj

2 ð2Þ

where Gr
1N is given by:

Gr
1N ¼

G0
1N

1� RLG0
11

� �
1� RRG0

NN

� �
� RLRR G0

1N

� �2 ð3Þ

The Green’s function G0
1N;G

0
NN and G0

11 can be analytically
determined by using the renormalization techniques. In
our calculations we take RL ¼ RR ¼ �iC=2, and G0

NN ¼ G0
11,

so we can rewrite the Eq. (2) as:

TðEÞ ¼
C2

4 G0
1N

� �2

1þ iC
2 G0

NN

h i2
þ C2

4 G0
1N

� �2
���� ����2

ð4Þ

The current passing through the DNA molecules can be
considered as a scattering process of an electron between
the leads. Using the Landauer formalism, the I–V character-
istics can be obtained by the following expression [21,24]:

IðVÞ ¼ 2e
h

Z 1

�1
ðfL � fRÞTðEÞdE ð5Þ

where fLðRÞ is the Fermi–Dirac distribution function given
by fLðRÞ ¼ f ðE� lLðRÞÞ, where lLðRÞ ¼ Ef � eV=2 is the chemi-
cal potential. For simplicity we have assumed that the bias
voltage drops at the DNA-lead interfaces. This assumption
does not affect the qualitative behaviour of the I–V charac-
teristics of these molecular systems.

The noise power of current fluctuations (NPCF) is calcu-
lated by the expression [19,24]:

S ¼ S0

Z 1

�1
½TðEÞffLð1� fLÞ þ fRð1� fRÞg

þ TðEÞf1� TðEÞgðfL � fRÞ2�dE ð6Þ

where S0 ¼ 2e2

p�h . The first two terms of this equation corre-
spond to the equilibrium noise contribution and the last
term gives the non-equilibrium or Shot noise contribution
to the power spectrum. By calculating the NPCF (S), and the
total current flowing through the DNA molecules, we can
evaluate the Fano factor F by the following relationship
[19]:
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F ¼ S
2eI

ð7Þ

For F ¼ 1, the Shot noise achieves the Poisson limit for
which there is not a correlation between the charge carri-
ers. On the other hand, for F < 1, the Shot noise achieves
the sub-Poisson limit and it provides the information about
the quantum correlation of the charge carriers [26].

2.1. Fishbone model

In the Fishbone model [25] the DNA molecules are de-
scribed by N unit cells, each one composed by three atomic
sites, one site corresponds to the base pair poly (G)-poly
(C) and the two lateral sites correspond to the backbone
formed by sugar-phosphate molecules. Due to the strong
coupling between the poly (G) and poly (C) bases, this
model considers the DNA molecules as a linear chain with
an effective on-site energy e0 and an intersite coupling ta.
Each site in this monoatomic sequence is coupled to a
backbone molecule by a potential tb. The on-site energies
of the backbone are labelled as ea, where a ¼ u; d corre-
spond to upper and lower molecules respectively, Fig. 1b.

In this model the single-band tight-binding Hamilto-
nian is given by H ¼ HDNA þ HC þ HI . The term HDNA repre-
sents the DNA molecule, HC is the lead contribution and
HI is the molecule–lead interaction, which are given by:

HC ¼
X
b¼L;R

X
kb

ekb
cykb

ckb

HI ¼
X

kL

VLcykL
d1 þ V�Ldy1ckL

� �
þ
X

kR

VRcykL
dN þ V�RdyNckR

� �
ð8Þ

where cykLðRÞ
is the creation operator of an electron in a state

kLðRÞ and energy ekLðRÞ and dyi is the creation operator of an
electron at the site i in the DNA molecule. The coupling be-
tween each lead (left and right) with the DNA is given by
the term VLðRÞ.

By using the decimation procedure, it is straightforward
to transform HDNA in a Hamiltonian corresponding to a one-
dimensional chain with N sites with effective on-sites
energies given by:

niðEÞ ¼ e0 þ
t2

b

E� eu
þ t2

b

E� ed
: ð9Þ

With this consideration, the effective Hamiltonian of the
DNA molecule can be written as:

HADN ¼ ta

X
i

dyi dðiþ1Þ þ dyðiþ1Þdi

� �
þ
X

i

niðEÞdyi di; ð10Þ

where ta ¼ t ¼ t0 is the coupling between sites of the new
effective chain, Fig. 2.

In order to obtain the transmission probability of Eq. (4)
we must calculate the matrix element Gr

1N . By using the
Dyson equation it can be shown [27] that:

Gr
1NðEÞ ¼

Gr0
1N

1� RLGr0
11

� �
1� RRGr0

NN

� �
� RLRR Gr0

1N

� �2 :

The bare Green’s function elements of the DNA molecule

Gr0ðEÞ
h i

ij
can be analytically calculated. For brevity we

quote only the matrix elements Gr0
1N;G

r0
11 and Gr0

NN:
Gr0
1NðEÞ ¼ UN xð Þtað Þ�1

; ð11Þ

Gr0
11ðEÞ ¼ Gr0

NNðEÞ ¼ t�1
a

UN�1 xð Þ
UN xð Þ ð12Þ

where the UNðxÞ are the generalized Chebyshev polynomi-
als that satisfy the recurrence relation UNþ1ðxÞ ¼ 2xUNðxÞ
�UN�1ðxÞ, with U0 ¼ 1 and U1 ¼ 2x. Here x ¼ 1=2g0ta with:

g0 ¼
ðE� euÞðE� edÞ

ðE� e0Þ ðE� euÞðE� edÞ � 2t2
b

� � ; ð13Þ

and e0 ¼ ðeu þ edÞ=2.
The transmission probability can be written in a com-

pact form as,

TðEÞ ¼ C2t2
a UN½ �2

t2
aU2

N � C2

4 U2
N�1 þ C2

4

h i2
þ CtaUNUN�1½ �2

ð14Þ

where C ¼ CL
11 ¼ CR

NN .
If xj j 6 1, UN ¼ sin N þ 1ð Þ#½ �= sin# with # ¼ cos�1ðxÞ

and if xj j > 1, UN ¼ sinh N þ 1ð Þn½ �= sinh n with n ¼ cosh�1

zðxÞ.
By making a simple analysis on the above equation we

can observe that if n!1 then TðEÞ ! 0 as TðEÞ / e�Nn.
With this expression for the transmission probability, we
calculate the I–V characteristics, the Shot noise and the
Fano factor of DNA molecules within this model.

2.2. Ladder model

In this model, the DNA molecules are described by two
linear atomic chains (up and down) composed of N sites,
laterally coupled between each other by an intrasite poten-
tial k. These chains represent the poly (G) and poly (C)
bases of the DNA, respectively. The intersite potential for
the poly (G) chain is taken as tg ¼ tu, whereas for the poly
(C) chain is taken as tc ¼ td. The onsite energies for each
linear chain are considered by eG ¼ eu and eC ¼ ed. In this
description of the DNA, the backbone molecules are taken
into account implicitly within the onsite energies terms for
each base.

With the above considerations, the full system is de-
scribed by a tight-binding Hamiltonian given by
H ¼ HDNA þ HL þ HI , with:

HDNA ¼
X

i;a¼u;d

ta aay
i aa
ðiþ1Þ þ aay

ðiþ1Þa
a
i

� �
þ
X
a¼u;d

eaaay
i aa

i

þ k
X

i

auy
i ad

i þ ady
i au

i

� �
ð15Þ

HL ¼
X

kL

ekL
cykL

ckL
þ
X

kR

ekR
cykR

ckR
ð16Þ

HI ¼
X

kL ;a¼u;d

TLcay
kL

aa
1 þ T�Laay

1 aa
1

� �
þ

X
kR ;a¼u;d

TRcay
kR

aa
N þ T�Raay

N ckR

� �
ð17Þ

where aay
i is the creation operator of an electron at site i

corresponding to the a ¼ u; d base, ea is the onsite energy
of the a base, the operator cykLðRÞ

is the creation operator of



Fig. 3. Upper panel: Transmission probability for different values of
intrasite coupling tb , for C ¼ ta , temperature T ¼ 0 K, ta ¼ 0:54 eV;N ¼ 10.
Contour plots: (a) I–V characteristic I=I0, (b) Shot noise S=S0 and (c) Fano
factor F as a function of bias voltage and intrasite coupling potential tb , for
the same parameters.
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an electron in a state kLðRÞ and energy ekLðRÞ and TLðRÞ is the
coupling between each lead with the DNA molecule.

By using the decimation procedure, we can transform
the ladder representation into an effective one-dimen-
sional chain of sites, obtaining renormalized local Green’s
functions and effective intersite couplings which contain
all the information of the planar DNA molecule. In order
to obtain the transmission probability given by Eq. (4),
we determine the Green’s functions Gr0

1N;G
r0
11 and Gr0

NN of
the effective linear chain.

The following equations for each GiN are obtained (see
Appendix for the complete deduction of these
expressions):

G1N ¼
y2 etdð�1ÞN�1

2xDN�1 � aDN�2
ð18Þ

GNN ¼
yDN�1

2xDN�1 � aDN�2
ð19Þ

where

Dj ¼ 2xDj�1 � Dj�2 ð20Þ

for j P 3 and with the initial conditions:

D1 ¼ 2x

D2 ¼ 4x2 � a ð21Þ

with

2x ¼ 1cgd
0
btd

; a ¼
fgd

0
etdcgd

0
btd

y ¼
fgd

0cgd
0
btd

ð22Þ

Here, cgd
0 ;
btd ;
fgd

0 and etd are the renormalized Green’s func-
tion and intersite potential for the down chain. The same
expressions can be obtained for the up chain.

By calculating recursively the above expressions, we
can determine semi-analytically the transmission proba-
bility for an electron passing through the DNA molecule.
By using these results we numerically calculate the I–V
characteristic, the Shot noise and the Fano factor of the
considered systems. These results are shown further in this
paper.

3. Results

3.1. Fishbone model

Results of the transmission coefficient as a function of
the energy, for a system composed by N ¼ 10 pairs of bases
and for different values of intrasite coupling tb, are dis-
played in the upper panel of Fig. 3. In order to compare with
experimental measures [9] of homogeneous chains of poly
(G) and poly (C), we have taken the DNA-leads coupling
C ¼ ta, the temperature T ¼ 0 K, the intersite potential
ta ¼ 0:54 eV and the onsite energies by e0 ¼ eu ¼ ed ¼ 0.

By using the analytic results given by Eq. (14) it is easy
to understand the results for the transmission probability.
The gap of the transmission can be determined by analys-
ing the limit jxj ¼ 1 in the argument of the Chebyshev poly-
nomials. This equation gives four energy values which
define two bands and a gap region where the transmission
is null. The values of these energies are:
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E1 ¼ �ta � ta

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2ðtb=taÞ

p
E2 ¼ ta � ta

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2ðtb=taÞ

p
E3 ¼ �ta þ ta

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2ðtb=taÞ

p
E4 ¼ ta þ ta

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2ðtb=taÞ

p
ð23Þ

The transmission spectrum presents two symmetric bands
of width W ¼ 2ta, exhibiting a finite number of unitary
peaks at some defined energies. These energy values can
be obtained by solving the transcendental equation
TðEÞ ¼ 1, with TðEÞ given by Eq. (14). The bands are sepa-
rated by a gap of width

D ¼ 2ta

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2

tb

ta

� 	2
s

� 1

24 35
that depends of both the intrasite and intersite coupling
parameters. This result indicates that the DNA molecules
could behave as a semiconductor or metal depending on
these coupling potentials, in accordance with results previ-
ously reported [25]. There are two regions determined by
the ratio tb=ta, for tb=ta � 1 the gap has a quadratic depen-
dence of tb, when this coupling is increased and tb=ta � 1,
gap shows a linear dependence with the intrasite coupling.
In this plot it is possible to observe the behaviour of the
gap width with the intrasite potential tb.

The same parameter dependence is reflected in the I–V
characteristic, the Shot noise and Fano factor, as it can be
seen in the corresponding (a), (b) and (c) contour plots of
Fig. 3. The tb dependence of the gap width is clearly exhib-
ited in the I–V characteristic and the Shot noise curves.
Nevertheless, there is a notorious difference between these
two transport properties due to the oscillations exhibited
by the Shot noise in a determined range of parameters.
This behaviour is produced due to the quantum fluctua-
tions of the current as a function of the bias voltage, which
are mainly determined by the quantum correlation be-
tween the electrons within the molecules. For a better
analysis of this fact, we have calculated the Fano factor F,
which indicates the presence (or not) of a correlation be-
tween the carriers in the systems. It is well known that
for F ¼ 1 the Shot noise presents a Poissonian regime
and, as a consequence, there is not correlation between
electrons into the DNA molecule. This happens for zero
current and for a certain range of values of intrasite hop-
ping tb and bias voltage V. On the other hand, for F < 1,
the Shot noise presents a sub-Poissonian limit and it is ex-
pected non-null quantum carrier correlations. This hap-
pens when the current increases as a function of the bias
voltage V, for different values of the intrasite potential tb.

In what follow we analyse the effect of the DNA-lead
coupling on the transport properties of DNA molecules.
Theoretical results about contact-dependent effects and
tunneling currents through DNA molecules have been re-
ported before by Macia et al. [28], they demonstrates the
importance of contact effects on turn-on currents charac-
teristics. Results of the transmission probability as a func-
tion of the Fermi energy, for a system composed by N ¼ 10
pairs of bases poly (G) and poly (C) and for different values
of the DNA-lead coupling C, are displayed in the upper
panel of Fig. 4. In order to compare with experimental
measurement [9], we have fixed the couplings
ta ¼ 0:54 eV and tb ¼ 0:75 eV and the onsite energies
e0 ¼ eu ¼ ed ¼ 0 with the temperature T ¼ 0 K.

The probability of transmission shows a strong depen-
dence on the DNA-lead coupling strength, for C� ta the
chain is weakly linked to the leads and a series of N well
defined transmission resonances of unit height appear.
This is a regime of resonant tunnelling where the reso-
nances correspond to the energies of the quasi-bound elec-
tronic states confined in a molecular wire of N atomic sites.
For strong coupling C� ta the electronic structure is mod-
ified significantly, which leads to resonances shifted and
broadened and not related to the isolated molecular levels.
In this strong coupling regime the number of resonances is
N � 2, indicating the hybridization between the end sites
of the chain and the leads. For the critical value C ¼ ta

the transmission is maximum for all energies within the
side bands.

Contour plots in Fig. 4 show current–voltage character-
istics I=I0, Shot noise S=S0 and Fano factor F as a function of
the lead-DNA coupling strength C and the bias voltage. We
note that the maximum current amplitude occurs around
the critical value of C ¼ ta, for which the mean value of
the transmission is maximum within the band. On the
other hand, the contour plot for S=S0 shows two areas
where the noise power of the current fluctuation is large.
These areas correspond to values of C for which the
DNA-lead coupling is either weak or strong. This can be ex-
plained by considering the mean value of the Shot noise at
temperature T ¼ 0, per energy range DE equal to the band-
width W. With this consideration, S ¼ Tð1� TÞDE will be
maximum if dS=dT ¼ ð1� TÞDE� TDE ¼ 0, and therefore
Smax is found when T ¼ 1=2. The Shot noise goes from the
Poisson limit (F ¼ 1) to the sub-Poisson limit (F < 1) as
long as we cross the threshold voltage determined by the
transmission gap. This emphasizes that the electrons are
correlated after the tunnelling process has occurred. We
also observe an area for coupling values around C ¼ ta,
where the Fano factor and the noise power of the current
fluctuations reaches minimum values. For these values
the electronic correlation will be maximum.

In Fig. 5 we show the behaviour of the current (I), the
Shot noise (S) and Fano factor (F) as a function of the mol-
ecule length. For T ¼ 0 K and C ¼ 0:025 eV it is observed
that the current shows staircase-like structure as a func-
tion of the applied bias voltage. This is due to the sharp res-
onances those appear in the transmission spectrum in this
weak DNA-lead coupling limit. The number of steps is
equal to the number of atomic sites considered. As the
number of poly (G) and poly (C) base-pairs in the chain is
increased, the transport properties that we have been dis-
cussing are not affected.

3.2. Ladder model

Results of the transmission probability as a function of
the Fermi energy, for a system composed by N ¼ 10 pairs
of bases poly (G) and poly (C) and for different values of
the intrasite coupling k, are displayed in the upper panel
of Fig. 6. In order to reproduce experimental measurements,
in this model we have taken the temperature T ¼ 0 K, the



Fig. 4. Upper panel: transmission probability for different values of the
lead-DNA coupling strength C for a N ¼ 10 DNA molecule with fixed
values of hopping parameters ta ¼ 0:54 eV;tb ¼ 0:75 eV and T ¼ 0 K.
Contour plots: (a) I–V characteristic I=I0, (b) Shot noise S=S0 and (c) Fano
factor F as a function of C and the bias voltage.
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onsite energies eg ¼ 1:14 eV, ec ¼ �1:06 eV and the inter-
site potential tc ¼ tg ¼ s ¼ 0:27 eV [9,29–32].

It is possible to observe that the amplitude of the trans-
mission probability changes as the intrasite coupling k is
increased. This behaviour can be explained by examining
the effective one dimensional chain obtained after the dec-
imation procedure, where the renormalized intersite cou-
pling and the renormalized local Green’s functions
depend on the coupling k (see Appendix), and therefore,
it affects the total transmission of the electrons through
the system.

On the other hand, our results exhibit a non-linear gap-
width dependence on the intrasite coupling k. In order to
explain this behaviour, we can describe the system by
using an effective model formed by two linear chains of
sites (up and down) interconnected between each other
by a coupling k, and connected to two leads by a coupling
C. We have considered an intersite coupling potential
equal to s, as is it shown in Fig. 2.

It is possible to decouple these two chains by using a
base of wavefunctions which allows us to diagonalize the
Hamiltonian of the isolate DNA molecule. We obtain two
independent effective linear chains, with onsite energies
given by:

e� ¼
ed þ euð Þ

2
� 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ed � euð Þ2 þ 4k2

q
ð24Þ

where these two energies e� correspond to the center of
each band of the transmission probability of Fig. 6.

Within this effective model, it is expected that electrons
can propagate into the system as plane waves of the form:
Wj ¼ a�eij� j þ b�e�ij� j, where j� are taken as normalized
wavevectors, and a� and b� are amplitudes of probability.
In the tight-binding approximation, the energy dispersion
relationship of these chains can be considered by:
e� e� ¼ 2s cos j�. The band edges are determined by the
condition: j ðe� e�Þ=2s j¼ 1, which gives us the following
set of solutions:

E1 ¼ eþ þ 2s
E2 ¼ eþ � 2s
E3 ¼ e� þ 2s
E4 ¼ e� � 2s ð25Þ

By using these expressions, we can determine the width of
the two bands in the transmission probability. By taking
the differences E1 � E2 and E3 � E4 we obtain the
bandwidth W ¼ 4s in concordance with results of previous
reports [33,25]. The gap of the transmission is obtained by
taking the difference E2 � E3, which shows a dependence
on the intrasite coupling k given by the expression:

D ¼ E2 � E3 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
eu � edð Þ2 þ 4k2

q
� 4s ð26Þ

From the above expression, it is clear that for k ¼ 0 the gap
still has a non-null value: D ¼j eu � ed j �4s.

The gap behaviour of the transmission probability as a
function of the coupling k is reflected in the I–V characteristic,
the Shot noise and the Fano factor, as it is shown in the corre-
sponding (a), (b) and (c) contour plots of Fig. 6. By analysing
the limits of the Eq. (26), it is possible to understand the



Fig. 5. (a) I–V characteristics I=I0, (b) Shot noise S=S0 and (c) Fano factor F,
for different molecule lengths. The hopping parameters are ta ¼
0:54 eV;tb ¼ 0:75 eV and DNA-lead coupling C ¼ 0:025 eV for T ¼ 0 K.

Fig. 6. Upper panel: transmission probability for different values of
intrasite coupling k, for tg ¼ tc ¼ s ¼ 0:27 eV;T ¼ 0 K;C ¼ s;N ¼ 10. Con-
tour plots: (a) I–V characteristic I=I0, (b) Shot noise S=S0 and (c) Fano
factor F as a function of bias voltage and intrasite coupling potential k.
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gap of these transport properties. For k� ðeu � edÞ the gap is

D ’ j ðeu � edÞ j 1þ 2k2=ðeu �
�


edÞ2� � 4sg, indicating a
quadratic dependence with k, whereas for k�j eu � ed j the
gap is D ’ 2k� 4s, indicating a linear evolution as a function
of the intrasite coupling.

On the other hand, in the contour plot for the current–
voltage characteristics I=I0 we note that the maximum cur-
rent amplitude occurs in the range of k between 0:1 eV and
0:5 eV, for which the transmission probability is maximum
within the bands. The contour plot for the Shot noise S=S0

shows a region where the noise power is large, correspond-
ing to values of k between 0:8 eV and 1:3 eV approxi-
mately. As we have discussed before in the Fishbone
model, Smax occurs when T ¼ 1=2. The Shot noise goes from
the Poisson limit (F ¼ 1) to the sub-Poisson limit (F < 1) as
long as we cross the threshold voltage determined by the
transmission gap. This again emphasizes the correlation
between electrons after the tunnelling process has
occurred.

In what follows, we analyse the same molecule but now
considering the intrasite coupling k constant and modify-
ing the DNA-leads coupling C. Results of the transmission
probability as a function of the Fermi energy are exhibit
in the upper panel of Fig. 7. It is possible to observe that
the gap and the bandwidth of the transmission probability
remain constant as C is increased. This can be seen in the
expressions given by Eqs. (25) and (26).

The amplitude and the number of resonances in the
transmission curves vary as the coupling C is modified.
In the limit of weak DNA-leads coupling, C < s, the system
is in a resonant tunnelling regime and therefore there are N
unitary transmission peaks, one for each nucleus base in
the considered molecule. On the other hand, for C P s
there is a strong coupling between the DNA molecule
and the leads with the corresponding hybridization of the
end sites of the molecule and the continuum of energies
in the leads. As a consequence of this strong coupling,
the molecular states are broadened and only N � 2 reso-
nances in the transmission curves are obtained [34,35].



Fig. 7. Upper panel: transmission probability for different values of DNA-
leads coupling C; tg ¼ tc ¼ s ¼ 0:27 eV;k ¼ 0:25 eV;T ¼ 0 K and N ¼ 10
atomic sites. Contour plots: (a) I–V Characteristics I=I0, (b) Shot noise S=S0

and (c) Factor Fano F as a function of bias voltage and DNA-leads coupling
C.
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Contour plots in Fig. 7 show (a) current–voltage charac-
teristics I=I0, (b) Shot noise S=S0 and (c) Fano factor F as a
function of the lead-DNA coupling strength C and the bias
voltage. In the Fig. 7a, it is observed a maximum amplitude
in the I–V characteristics when the DNA-leads coupling
reach the critical value C ¼ s. The contour plot of the Shot
noise presents two areas where the Noise power is
large. These areas correspond to values of C between
0:1 eV� 0:15 eV and 0:6 eV� 1 eV for which the mean va-
lue of the transmission probability, as we discuss before, is
T ¼ 1=2. This is reflected in the Fano factor, where it is pos-
sible to observe a lower carrier correlation in the same
range of values of C.

In summary in this paper we have proposed a semi-
analytic method for the calculation of the transport
properties of homogeneous DNA molecules. We have
studied these molecules by adopting two different models:
Fishbone and Ladder models, within a nearest neighbour
tight-binding approach. By using Green’s function tech-
niques within a real-space renormalization scheme, we
have calculated the transmission probability, the I–V
characteristics, the noise power of current fluctuations
and Fano factor of a finite fragment of DNA composed by
N base pairs of Guanine (poly (G)) and Cytosine (poly
(C)) connected to two semi-infinite leads. These properties
have been studied as a function of intrasite and DNA-leads
coupling parameters in both models. Our results show
different transport regimes for these molecular systems
as a function of the coupling intensities, exhibiting
metal–semiconductor transitions in good agreement with
experimental results [9].
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for a helpful discussions. This work was financial
supported by USM Internal Grant No. 110971, FONDECYT
Program, Grants Nos. 11090212, 1100560 and 1100672,
and DIN-UPTC.

Appendix A. Green’s function G1N for Ladder model

The decimation procedure is started by writing the local
Green’s functions for each chain by:

gd
0 ¼

1
E� ed

gu
0 ¼

1
E� eu

ðA:1Þ

where d;u represent down and up chain respectively.
According to the ladder model, the Green’s functions Gij

for the first sites of both chains (labeled by 0) are given by:

Gd
00 ¼ gd

0 þ gd
0tdGd

10 þ gd
0kGu

00

Gu
00 ¼ gu

0 þ gu
0tuGu

10 þ gu
0kGd

00 ðA:2Þ

Similar expressions can be obtained for the Green’s
functions Gd

11;G
u
11;G

d
22;G

u
22, etc. By decoupling the above

equations, it is possible to determine the effective local
Green’s function and its corresponding effective inter-site
coupling. The resulting Green’s functions and effective po-
tential for the end sites are given by:



1428 J.H. Ojeda et al. / Organic Electronics 13 (2012) 1420–1429
cgd
0 ¼ gd

0

1� gu
0tu

� �2 þ kgu
0

1� gu
0tu

� �2 � gd
0gu

0k
2

( )

t ¼ btd ¼
td � td gu

0tu
� �2 þ tuk

2 gu
0

� �2

1� gu
0tu

� �2 þ kgu
0

ðA:3Þ

and for inner sites of the down chain they are given by:

cgd
0 ¼ gd

0

1� 2 gu
0tu

� �2 þ kgu
0

1� 2 gu
0tu

� �2 � gd
0gu

0k
2

( )

t0 ¼ btd ¼
td 1� 2ðgu

0tuÞ2
� �

þ ðkgu
0Þ

2tu

1� 2 gu
0tu

� �2 þ kgu
0

ðA:4Þ

For the upper chain, the renormalized Green’s functions
are given by:

cgu
0 ¼ gu

0

1� gd
0td

� �2 þ kgd
0

1� ðgd
0tdÞ2 � gu

0gd
0k

2

( )

t ¼ btu ¼
tu � tu gd

0tu
� �2 þ tdk

2 gd
0

� �2

1� gd
0td

� �2 þ kgd
0

ðA:5Þ

and for inner sites of the upper chain:

cgu
0 ¼ gu

0

1� 2 gd
0td

� �2 þ kgd
0

1� 2ðgd
0tdÞ2 � gu

0gd
0k

2

( )

t0 ¼ btu ¼
tu 1� 2ðgd

0tdÞ2
� �

þ ðkgd
0Þ

2td

1� 2 gd
0td

� �2 þ kgd
0

ðA:6Þ

With the above expressions we determine the Green’s
function G1N of the system. We have renamed fgd

0 ¼
cgd

0

and etd ¼ btd for the end sites of the chain. Then, we write
a set of equations for GiN with i ¼ 1;N (N the total number
of atomic sites), given by:

G1N ¼ fgd
0
etd G2N

G2N ¼ cgd
0
btd G1N þcgd

0
btd G3N

G3N ¼ cgd
0
btd G2N þcgd

0
btd G4N

G4N
..
.
¼ cgd

0
btd G3N þcgd

0
btd G5N

..

.

GNN ¼ fgd
0 þfgd

0
etd GN�1;N ðA:7Þ

Rewriting the Eq. (A.7) we obtain:

2xG1N � aG2N ¼ 0
2xG2N � G1N � G3N ¼ 0
2xG3N � G2N � G4N ¼ 0

2xG4N � G3N � G5N
..
.

¼ 0
..
.

2xGNN � atdGN�1;N ¼ y ðA:8Þ

where

2x ¼ 1cgd
0
btd

; a ¼
fgd

0
etdcgd

0
btd

and y ¼
fgd

0cgd
0
btd

Now, we take the Eq. (A.8) to calculate each term GiN , and
we obtain:
G1N ¼
y2 etdð�1ÞN�1

2xDN�1 � aDN�2
ðA:9Þ

GNN ¼
yDN�1

2xDN�1 � aDN�2

where

Dj ¼ 2xDj�1 � Dj�2

For j P 3 and with the initial conditions:

D1 ¼ 2x

D2 ¼ 4x2 � a

By using these equations we calculate semi-analytically
the transmission probability of an electron passing through
the DNA molecule.
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